
Big	Data	Systems:	
MongoDB	Homework	Assignment	

Instructions	
	
The	objective	of	this	assignment	is	to	hone	your	skills	with	MongoDB.	This	is	an	
individual	assignment;	you	are	not	allowed	to	work	in	groups.	The	assignment	
consists	of	three	parts.	In	the	first	part	you	will	focus	on	building	up	your	
technique	with	writing	queries	in	MongoDB,	and	on	using	the	aggregate	pipeline	
in	particular.	In	the	second	part	of	the	assignment	you	will	leverage	your	
knowledge	of	R	to	setup	communication	between	R	and	MongoDB.	In	the	third	
and	final	part	you	will	learn	how	to	write	simple	map-reduce	queries	in	
MongoDB.		
	
	 	

Part	One	(Queries	and	the	Aggregation	Pipeline)	
	
In	this	section	we	are	going	to	focus	on	learning	how	to	write	complex	queries	in	
MongoDB.		To	do	this,	we	are	going	to	create	the	student	database	by	loading	the	
JavaScript	file	that	we	saw	in	class,	which	is	provided	with	this	assignment	and	
with	the	notes	in	a	file	called	prep.js.	
	
1.	Using	the	load()	function	inside	the	mongo	shell,	load	the	prep.js	file	
	
This	will	create	a	students	collection	in	whatever	database	you	are	currently	
using.	We	will	use	only	this	collection	for	the	remainder	of	this	first	part.	Be	
advised	that	this	script	contains	a	random	component	so	that	you	will	each	get	a	
slightly	different	(but	same	structure)	version	of	the	students	collection.	
	
Here	is	an	example	of	an	object	that	could	be	from	the	students	collection:	
	
db.students.findOne()	
{	
	 "_id"	:	ObjectId("558d08925e083d8cdd7be831"),	
	 "home_city"	:	"Kalamata",	
	 "first_name"	:	"Eirini",	
	 "hobbies"	:	[
	 	 "skydiving",	
	 	 "guitar",	
	 	 "AD&D"	
],	
	 "favourite_os"	:	"OS	X",	
	 "laptop_cost"	:	1506,	
	 "courses"	:	[
	 	 {	
	 	 	 "course_code"	:	"P102",	
	 	 	 "course_title"	:	"Introduction	to	R",	
	 	 	 "course_status"	:	"Complete",	
	 	 	 "grade"	:	10	
	 	 },	
	 	 {	
	 	 	 "course_code"	:	"S102",	
	 	 	 "course_title"	:	"Mathematical	Statistics",	
	 	 	 "course_status"	:	"In	Progress"	
	 	 },	
	 	 {	
	 	 	 "course_code"	:	"P201",	
	 	 	 "course_title"	:	"Advanced	R",	
	 	 	 "course_status"	:	"In	Progress"	
	 	 },	
	 	 {	
	 	 	 "course_code"	:	"S202",	
	 	 	 "course_title"	:	"Graph	Theory",	
	 	 	 "course_status"	:	"Complete",	

	 	 	 "grade"	:	7	
	 	 },	
	 	 {	
	 	 	 "course_code"	:	"M102",	
	 	 	 "course_title"	:	"Data	Mining",	
	 	 	 "course_status"	:	"In	Progress"	
	 	 }	
]	
	
As	you	can	see,	this	collection	as	we	discussed	in	class	is	a	collection	that	tracks	
the	performance	of	different	students	enrolled	in	classes		
	
2.	For	EACH	of	the	following	we	want	you	to	write	a	SINGLE	command	that	
will	produce	the	desired	result.	We	want	you	to	either	use	
db.students.find()	function	for	the	simpler	questions,	or	to	use	
db.students.aggregate()	function	(i.e.	the	aggregation	pipeline).	Consult	the	
slides	for	these	but	also	make	sure	you	also	consult	the	excellent	online	
documentation,	in	particular	for	the	aggregation	pipeline	
(http://docs.mongodb.org/manual/core/aggregation-pipeline/).	
	

- How	many	students	in	your	database	are	currently	taking	at	least	1	
class	(i.e.	have	a	class	with	a	course_status	of	“In	Progress”)?	

- Produce	a	grouping	of	the	documents	that	contains	the	name	of	each	
home	city	and	the	number	of	students	enrolled	from	that	home	city.	

- Which	hobby	or	hobbies	are	the	most	popular?	
- What	is	the	GPA	(ignoring	dropped	classes	and	in	progress	classes)	

of	the	best	student?	
- Which	student	has	the	largest	number	of	grade	10’s?	
- Which	class	has	the	highest	average	GPA?		
- Which	class	has	been	dropped	the	most	number	of	times?	
- Produce	of	a	count	of	classes	that	have	been	COMPLETED	by	class	

type.	The	class	type	is	found	by	taking	the	first	letter	of	the	course	
code	so	that	M102	has	type	M.	So	I	basically	want	how	many	courses	
have	been	completed	in	type	M,	how	many	of	type	S,	how	many	of	
type	P	etc…	(HINT:	check	out	the	$substr	function	here:	
http://docs.mongodb.org/manual/reference/operator/aggregation
/substr/)	

- Produce	a	transformation	of	the	documents	so	that	the	documents	
now	have	an	additional	boolean	field	called	“hobbyist”	that	is	true	
when	the	student	has	more	than	3	hobbies	and	false	otherwise.	

- Produce	a	transformation	of	the	documents	so	that	the	documents	
now	have	an	additional	field	that	contains	the	number	of	classes	that	
the	student	has	completed	

- Produce	a	transformation	of	the	documents	in	the	collection	so	that	
they	look	like	this:	

													{	
"_id"	:	ObjectId("558d08925e083d8cdd7be831"),	

	 "first_name"	:	"Eirini",	
“GPA”	:	8.5	

“classesInProgress”	:	3	
“droppedClasses”	:	0	
}	
The	GPA	is	the	average	grade	of	all	the	completed	classes.	The	other	
two	computed	fields	are	the	number	of	classes	currently	in	progress	
and	the	number	of	classes	dropped.	No	other	fields	should	be	in	
there.	No	other	fields	should	be	present.	

- Produce	a	NEW	collection	(HINT:	Use	$out	in	the	aggregation	
pipeline)	so	that	the	new	documents	in	this	correspond	to	the	
classes	on	offer.	The	structure	of	the	documents	should	be	like	this:	
{	
“_id”	:	“M102"	
"course_title"	:	"Data	Mining",	
“numberOfDropouts:	34	
“numberOfTimesCompleted:	34	
	“currentlyRegistered”:	[ObjectId("558d08925e083d8cdd7be831"),				
																																																		…]	
“maxGrade”	:	10	
“minGrade”	:	2	
“avgGrade”	:		7.6	
}	
	
The	_id	field	should	be	the	course	code.	The	course_title	is	what	it	
was	before.	The	numberOfDropouts	is	the	number	of	students	who	
dropped	out.	The	numberOfTimesCompleted	is	the	number	of	
students	that	completed	this	class.	The	currentlyRegistered	array	is	
an	array	of	ObjectID’s	corresponding	to	the	students	who	are	
currently	taking	the	class.	Finally,	for	the	students	that	completed	
the	class,	the	maxGrade,	minGrade	and	avgGrade	are	the	summary	
statistics	for	that	class.	

	
Please	read	each	question	carefully	and	make	sure	your	answer	for	each	of	this	
produces	only	what	is	being	asked.	For	example,	look	at	the	first	question.	This	is	
clearly	asking	for	a	single	number	(“How	many	students…”).	If	I	run	the	
command	you	submit	in	your	assignment	for	this	question	it	should	therefore	
just	give	me	back	a	number	not,	say,	a	list	of	students	with	the	number	of	classes	
they	are	taking.	The	third	question	asks	“Which	hobby	or	hobbies..,”	Try	to	give	
me	back	a	list	of	documents	that	only	has	the	names	of	the	hobbies	in	question	
i.e.	use	appropriate	projection.	The	same	applies	to	the	remainder	of	the	
questions.	This	exercise	is	excellent	practice	for	building	up	expertise	in	writing	
queries	and	studying	your	data	which	I	assure	you	is	an	integral	part	of	doing	
data	analysis	in	the	workplace.		
	
	
	
	

Part	Two	(R	and	MongoDB)	
		
In	this	part	we	are	going	to	show	you	how	to	communicate	with	MongoDB	from	
R.	This	section	is	going	to	be	relatively	straightforward.	Just	follow	the	
instructions	in	each	paragraph	and	you	will	do	fine.	
	
In	order	to	talk	with	Mongo	we	need	to	use	a	special	package	called	rmongodb.	
There	is	an	excellent	cheatsheat	for	this	here:	http://cran.r-
project.org/web/packages/rmongodb/vignettes/rmongodb_cheat_sheet.pdf	
We’ll	go	through	some	of	the	more	basic	functionalities	in	this	section	and	leave	
you	to	explore	some	of	the	more	advanced	features	on	your	own.	
	
1.	Install	and	load	the	package	rmongodb	
	
Mongo	should	be	running	on	port	27017	by	default.	In	R,	and	also	with	other	
programming	languages,	we	connect	to	a	Mongo	instance	by	creating	and	storing	
an	object	that	represents	the	connection	itself.		We	do	this	using	the	function	
mongo.create().	If	we	specify	no	arguments,	all	the	default	values	are	used	and	
we	should	be	able	to	connect	to	our	local	database	immediately.	
	
2.	Open	a	connection	to	mongo	and	store	the	object	in	an	object	called	
mongo	
	
At	any	time,	you	can	check	if	the	connection	is	still	active	by	running	the	function	
mongo.is.connected()	and	passing	it	a	mongo	connection	object	that	was	
previously	created.	
	
3.	Check	that	you	are	connected	to	your	mongo	installation	
	
Once	you	are	connected	let’s	first	create	a	variable	that	will	contain	the	name	of	
our	namespace	as	we	will	need	this	often.	A	namespace	is	the	combination	of	
database	and	collection	name	in	the	format	<database	name>.<collection	name>	
	
4.	Create	a	string	namespace	variable	to	represent	a	mongo	collection	
“lab2”	in	a	database	“r”	
	
In	Mongo,	database	objects	are	Binary	JSON	objects,	also	known	as	BSON	objects.	
If	we	want	to	communicate	with	Mongo,	we	need	a	way	to	create	and	read	BSON	
objects	and	this	is	exactly	the	functionality	that	the	package	provides.	In	the	
Mongo	shell	we	can	just	write	regular	JSON	objects	and	they	are	automatically	
converted	to	BSON	objects.	We	can	do	something	similar	here.	The	way	to	create	
a	JSON	string	object	is	to	use	single	quotes,	followed	by	curly	brackets	followed	
by	a	comma	separated	list	of	key-value	pairs	where	the	key	is	separated	from	the	
value	using	a	colon.		
	
We	definitely	need	an	example	here	to	refresh	our	memory.	Suppose	we	want	a	
JSON	object	that	has	a	city’s	name	and	population.	Here	it	is	(try	it	in	R!):	
	
JSON_string<-'{"name":"London",	"population":"10.5	million"}'	

	
The	reason	why	we	use	single	quotes	is	that	we	need	regular	quotes	for	the	fields	
themselves	and	we	need	a	way	to	tell	R	that	the	whole	thing	is	a	string	object	and	
this	string	object	itself	has	quotes	(another	way	is	to	use	a	backslash	in	front	of	
every	nested	quote	symbol)	
	
5.	Create	a	JSON	string	variable	to	represent	a	person	whose	name	is	
Cristiano	and	whose	language	is	Portuguese.		
	
We	can	insert	this	person	into	R	using	the	command	mongo.insert().	This	takes	
in	a	connection	object,	a	string	with	the	name	of	the	namespace,	and	a	BSON	
object.	To	create	a	BSON	object	from	our	JSON	string	just	pass	that	string	into	the	
function	mongo.bson.from.JSON()	first.	
	
6.	Insert	Cristiano	into	your	MongoDB	database	and	save	the	result	of	the	
call	into	a	variable	called	ok	
	
We	can	check	whether	the	result	was	successful	in	R,	by	checking	that	the	value	
of	the	ok	variable	is	TRUE.	
	
Let’s	now	open	a	mongo	shell	using	the	mongo	command	and	see	if	we	really	did	
something.		Type	the	following	to	commands	and	make	sure	you	see	a	single	
document	with	Cristiano.	
	
use	r	
db.lab2.find()	
	
The	first	command	switches	to	the	r	database	and	the	second	is	a	find	all	
command	in	the	namespace	lab2.		
	
Another	way	to	create	a	BSON	object	is	from	a	list	using	the	
mongo.bson.from.list()	command	and	passing	it	a	list	of	key	value	pairs.	For	
example,	a	valid	list	to	represent	the	London	document	we	worked	before	would	
be:	
	
l<-	list(name="London",	population="10.5	million")	
	
7.	Create	two	new	BSON	objects	to	represent	Ioanna,	whose	language	is	
English	and	her	age	is	34,	and	Dimitris,	whose	language	is	Greek	and	his	
age	is	29	
	
Now	we	have	more	than	one	object	that	we	want	to	put	inside	Mongo	and	this	is	
a	typical	case.	We	can	use	the	command	mongo.insert.batch()	to	add	multiple	
objects.	This	has	the	same	syntax	as	mongo.insert()	except	that	the	final	
argument	must	be	a	list	of	BSON	objects	
	
8.	Insert	Ioanna	and	Dimitris	in	the	database	and	use	both	the	result	of	the	
call	as	well	as	the	mongo	shell	to	make	sure	you	were	successful	
	

Let’s	say	we	want	to	update	documents	now.	Remember	that	in	Mongo,	we	must	
provide	a	document	that	describes	all	the	documents	we	want	to	update	and	
then	provide	a	new	document,	which	will	replace	these	documents.	We	can	issue	
a	mongo	update	from	R	using	the	mongo.update()	command.	This	takes	a	mongo	
connection	object,	the	namespace,	and	can	take	two	strings	in	JSON	format.	The	
first	will	represent	the	query	and	the	second	will	be	the	updated	document	
	
9.	Update	Cristiano	so	that	he	now	has	an	age	of	26.	Once	again	check	your	
results	both	in	R	and	in	Mongo	
	
We	can	also	remove	documents	from	R	using	mongo.remove().	This	has	the	exact	
same	syntax	as	mongo.update()	except	that	we	don’t	have	the	final	argument	
which	is	a	string	in	JSON	format	to	replace	the	documents	found	with	the	query	
JSON.	
	
10.	Remove	Dimitris	from	the	database.	Once	again	check	your	results	both	
in	R	and	in	Mongo	
	
We	can	run	queries	in	mongo	as	well.	We	do	this	with	the	mongo.find()	function.	
If	we	pass	in	just	a	connection	and	a	namespace	we	will	retrieve	all	the	
documents	from	the	namespace.	If,	instead	we	also	pass	in	a	third	argument	with	
a	JSON	string	describing	the	documents	we	want,	we	will	retrieve	documents	
that	match	that	query.	The	trick	is,	that	we	receive	an	object	that	is	a	cursor.	This	
is	an	object	that	we	must	repeatedly	call	a	next()	function	on	in	order	to	get	the	
next	result.	So,	if	we	want	to	process	a	range	of	rows	we	will	need	a	while	loop	as	
follows	(shown	here	for	a	find	all	operation)	
	
cursor <- mongo.find(mongo, namespace)
current_row_number <- 0

while(mongo.cursor.next(cursor)) {
	

current_row_number<- current_row_number+1
current_row<-cval = mongo.cursor.value(cursor)

#Some code to do something with the row

}

Once	we	have	the	current_row	object,	we	can	extract	a	particular	field	from	the	
document	using	the	function	mongo.bson.value().	For	example,	if	we	have	an	
“age”	field	we	get	it	by	calling	mongo.bson.value(current_row,”age”)	
	
11.	Add	some	more	people	into	the	collection.	Then,	extract	all	the	people	
from	the	collection	using	the	code	just	given,	and	store	them	into	a	data	
frame.	
	
Actually	there	is	a	function	for	doing	this	called	mongo.cursor.to.data.frame	but	
we	want	you	to	practice	your	coding	skills	and	not	use	that	function.	Now,	we	
have	a	way	of	getting	data	from	mongo	and	processing	it	with	R.	Neat!	We	can	
also	export	data	to	a	collection.	

	
12.	Write	a	function	to	store	the	contents	of	the	heart	data	frame	into	a	
heart	collection.	You	know	everything	you	need	to	do	this.	
	
You’ve	now	seen	the	basics	of	working	with	MongoDB.	As	a	final	command,	close	
your	connection	to	Mongo	by	issuing	the	command	mongo.destroy()	and	passing	
it	your	mongo	connection	object.	
	
13.	Close	your	MongoDB	connection.	

Part	Three	(MapReduce)	
	
In	this	final	part	we	want	you	to	learn	how	to	write	map	reduce	queries	in	
MongoDB.	Please	read	the	inline	documentation	at	
http://docs.mongodb.org/manual/core/map-reduce/	and	also	check	out	some	
examples	at	http://docs.mongodb.org/manual/tutorial/map-reduce-examples/.	
In	general	you	will	see	that	the	syntax	is	simple	and	intuitive.	To	learn	this	
functionality,	we	will	ask	you	to	write	the	following	map	reduce	jobs:	
	
1.	Write	a	map	reduce	job	on	the	students	collection	similar	to	the	classic	
word	count	example.	Specifically	we	want	you	to	do	a	word	count	using	the	
course	title	field	as	the	text.	In	addition	we	want	you	to	exclude	stop	words	
from	this	list	and	we	will	leave	you	to	find/write	your	own	list	of	stop	
words.	Remember	that	stop	words	are	the	common	words	in	the	English	
language	like	“a”,	“in”,	“to”	“the”	etc…		
	
2.	Now	write	a	map	reduce	job	on	the	students	collection	whose	goal	is	to	
compute	average	GPA	scores	for	completed	courses	by	home	city	and	by	
course	type	(M,	B,	P,	etc…	please	refer	to	question	2	of	Part	One)	
	
	

